Compare commits

...

15 Commits

Author SHA1 Message Date
Alex The Bot
b258f3552a Version v1.64.0 2023-06-26 18:06:11 +00:00
Ethan Margaillan
e803bc909f feat(web): store albums sorting policy in local storage (#2966) 2023-06-26 11:54:20 -05:00
Sergey Kondrikov
d078aea32b Normalize progress bar value (#2967) 2023-06-26 11:54:08 -05:00
Sergey Kondrikov
fb2cfcb640 feat(mobile): custom video player controls (#2960)
* Remove toggle fullscreen button

* Implement custom video player controls

* Move Padding into Container
2023-06-26 10:27:47 -05:00
Fynn Petersen-Frey
99f85fb359 feat(Android): guard against missing EXIF info (#2965) 2023-06-26 10:27:32 -05:00
Keszei Balázs
454fb106d2 Updated OSM tile URLs immich-app/immich#2874 (#2961)
Co-authored-by: Balazs Keszei <balazs.keszei@clbr.hu>
2023-06-26 08:47:37 -05:00
Nurullah Türkoğlu
7d078a2f0e add Turkish README file (#2943)
* add Turkish README file

* fixed a typo
2023-06-25 21:29:41 -05:00
Alex
b015648bfe chore(mobile): Add more error log (#2949)
Co-authored-by: alex <alex@pop-os.localdomain>
2023-06-25 18:59:35 -05:00
Mert
a58482cb2b added locustfile (#2926) 2023-06-25 13:20:45 -05:00
Elliot Lee
9dd1d81536 Allow Windows' version of the MIME types for raw photos. (#2945)
* Allow Windows' version of the MIME types for raw photos.

* Fix prettier warning.

---------

Co-authored-by: Elliot Lee <sopwith@gmail.com>
2023-06-25 13:10:39 -05:00
Mert
a2f5674bbb refactor(ml): modularization and styling (#2835)
* basic refactor and styling

* removed batching

* module entrypoint

* removed unused imports

* model superclass,  model cache now in app state

* fixed cache dir and enforced abstract method

---------

Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
2023-06-24 22:18:09 -05:00
Mert
837ad24f58 fix(deps): install poetry in pump workflow (#2938)
* install poetry in pump workflow

* formatting
2023-06-24 22:03:50 -05:00
bo0tzz
058c62b111 feat(blog): Make blog public, add June 2023 update post (#2935)
* feat(blog): Add blog link to website header

* feat(blog): June 2023 update post

* chore(blog): Reorder folder structure

* chore(blog): Add discord link

* chore(blog): Formatting

* chore(blog): Use youtube embeds

* fix format

---------

Co-authored-by: alex <alex@pop-os.localdomain>
2023-06-24 22:02:39 -05:00
Alex The Bot
bbb6bca605 Version v1.63.2 2023-06-25 02:53:18 +00:00
Alex
a8e5a1de15 chore(server): support DNG file (#2940) 2023-06-24 21:50:01 -05:00
59 changed files with 2590 additions and 555 deletions

View File

@@ -34,6 +34,9 @@ jobs:
with:
token: ${{ secrets.ORG_RELEASE_TOKEN }}
- name: Install Poetry
run: pipx install poetry
- name: Bump version
run: misc/release/pump-version.sh -s "${{ inputs.serverBump }}" -m "${{ inputs.mobileBump }}"

View File

@@ -19,6 +19,7 @@
<br/>
<p align="center">
<a href="README_zh_CN.md">中文</a>
<a href="README_tr_TR.md">Türkçe</a>
</p>
## Disclaimer

104
README_tr_TR.md Normal file
View File

@@ -0,0 +1,104 @@
<p align="center">
<br/>
<a href="https://opensource.org/licenses/MIT"><img src="https://img.shields.io/badge/license-MIT-green.svg?color=3F51B5&style=for-the-badge&label=License&logoColor=000000&labelColor=ececec" alt="License: MIT"></a>
<a href="https://discord.gg/D8JsnBEuKb">
<img src="https://img.shields.io/discord/979116623879368755.svg?label=Discord&logo=Discord&style=for-the-badge&logoColor=000000&labelColor=ececec" atl="Discord"/>
</a>
<br/>
<br/>
</p>
<p align="center">
<img src="design/immich-logo.svg" width="150" title="Login With Custom URL">
</p>
<h3 align="center">Immich - Yüksek performanslı, kendine ait barındırılan fotoğraf ve video yedekleme çözümü</h3>
<br/>
<a href="https://immich.app">
<img src="design/immich-screenshots.png" title="Main Screenshot">
</a>
<br/>
<p align="center">
<a href="README.md">English</a>
<a href="README_zh_CN.md">中文</a>
</p>
## Feragatname
- ⚠️ Proje **çok aktif** bir şekilde geliştirilmektedir.
- ⚠️ Hatalar ve uygulama yapısını bozan değişiklikler olabilir.
- ⚠️ **Uygulamayı, fotoğraflarınızı ve videolarınızı saklamanın tek yöntemi olarak kullanmayın!**
## Content
- [Resmi Belgeler](https://immich.app/docs)
- [Yol Haritası](https://github.com/orgs/immich-app/projects/1)
- [Demo](#demo)
- [Özellikler](#özellikler)
- [Giriş](https://immich.app/docs/overview/introduction)
- [Kurulum](https://immich.app/docs/install/requirements)
- [Katkı Sağlama Rehberi](https://immich.app/docs/overview/support-the-project)
- [Projeyi Destekle](#projeyi-destekle)
## Belgeler
Kurulum dahil olmak üzere resmi belgeleri https://immich.app/ adresinde bulabilirsiniz.
## Demo
Web demo adresi: https://demo.immich.app
Mobil uygulama için `Server Endpoint URL` olarak `https://demo.immich.app/api` adresini kullanabilirsiniz.
```bash title="Demo Bilgileri"
Giriş bilgileri:
email: demo@immich.app
password: demo
```
```
Server Özellikleri: Free-tier Oracle VM - Amsterdam - 2.4Ghz quad-core ARM64 CPU, 24GB RAM
```
# Özellikler
| Özellikler | Mobile | Web |
| ----------------------------------------------------| ------ | --- |
| Videoları ve fotoğrafları yükleme ve görüntüleme | Evet | Evet |
| Uygulama açıldığında otomatik yedekleme | Evet | N/A |
| Yedekleme için seçilebilir albüm(ler) | Evet | N/A |
| Fotoğrafları ve videoları yerel cihaza yükleme | Evet | Evet |
| Çoklu kullanıcı desteği | Evet | Evet |
| Albüm ve paylaşılan albümler | Evet | Evet |
| Silinebilir/sürüklenebilir kaydırma çubuğu | Evet | Evet |
| RAW (HEIC, HEIF, DNG, Apple ProRaw) format desteği | Evet | Evet |
| Metadata'ya uygun görüntüleme (EXIF, map) | Evet | Evet |
| Metadata, objects, faces ve CLIP'e göre arama | Evet | Evet |
| Yönetimsel işlevler (kullanıcı yönetimi) | Hayır | Evet |
| Arka planda yedekleme | Evet | N/A |
| Sanal kaydırma | Evet | Evet |
| OAuth desteği | Evet | Evet |
| API anahtarları | N/A | Evet |
| LivePhoto yedekleme ve oynatma | iOS | Evet |
| Kullanıcı tanımlı depolama yapısı | Evet | Evet |
| Herkese açık paylaşım | Hayır | Evet |
| Arşiv ve Favoriler | Evet | Evet |
| Dünya haritası | Hayır | Evet |
| Partner paylaşımı | Evet | Evet |
| Yüz tanıma ve kümeleme | Hayır | Evet |
| Çevrimdışı destek | Evet | Hayır|
# Projeyi Destekle
Bu projeye bağlı kaldım ve durmayacağım. Belgeleri güncellemeye, yeni özellikler eklemeye ve hataları düzeltmeye devam edeceğim. Ancak bunu tek başıma yapamam. Bu yüzden devam etme konusunda bana motivasyon sağlamanız için yardımınıza ihtiyacım var.
[selfhosted.show - In the episode 'The-organization-must-not-be-name is a Hostile Actor'](https://selfhosted.show/79?t=1418) bölümünde söylendiği üzere,bu projede takımımın ve benim projeye harcadağımız büyük bir çaba var. Bir gün bunu tam zamanlı olarak yapabilmeyi çok isterim. Bunu gerçekleştirebilmek için gerçekten sizlerin desteğine ihtiyacım var.
Eğer bu size doğru bir amaç gibi geliyorsa ve uygulamanın uzun bir süre boyunca kullanacağınız bir şey olduğunu düşünüyorsanız, aşağıdaki bağlantılardan birini kullanarak bana destek olabilirsiniz.
## Bağış
- [Aylık bağış](https://github.com/sponsors/alextran1502) via GitHub Sponsors
- [Bir seferlik bağış](https://github.com/sponsors/alextran1502?frequency=one-time&sponsor=alextran1502) via GitHub Sponsors
- [Librepay](https://liberapay.com/alex.tran1502/)
- [buymeacoffee](https://www.buymeacoffee.com/altran1502)
- Bitcoin: 1FvEp6P6NM8EZEkpGUFAN2LqJ1gxusNxZX

View File

@@ -23,6 +23,7 @@
<p align="center">
<a href="README.md">English</a>
<a href="README_tr_TR.md">Türkçe</a>
</p>

View File

@@ -0,0 +1,105 @@
---
title: June 2023 update
authors: [alextran]
tags: [update]
---
Hello everybody, Alex here!
I am back with another update on Immich. It has been only a month since my last update (May 18th, 2023), but it seems forever. I think the rapid releases of Immich and the amount of work make the perspective of time change in Immichs world. We have some exciting updates that I think you will like.
Before going into detail, on behalf of the core team, I would like to thank all of you for loving Immich and contributing to the project. Thank you for helping me make Immich an enjoyable alternative solution to Google Photos so that you have complete control of your data and privacy. I know we are still young and have a lot of work to do, but I am confident we will get there with help from the community. I appreciate all of you from the bottom of my heart!
<!--truncate-->
And now, to the exciting part, what is new in Immichs world?
- Initial support for existing gallery.
- Memory feature.
- Support XMP sidecar.
- Support more raw formats.
- Justified layout for web timeline and blurred thumbnail hash.
- Mechanism to host machine learning on a completely different machine.
## Support for existing gallery
I know this is the most controversial feature when it comes to Immichs way of ingesting photos and videos. For many users, having to upload photos and videos to Immich is simply not working. We listen, discuss, and digest this feature internally more than you imagine because it is not a simple feature to tackle while keeping the performance and the user experience at the top level, which is Immichs primary goal.
Thankfully, we have many great contributors and developers that want to make this come true. So we came up with an initial implementation of this feature in the form of a supporting read-only gallery.
To be concise, Immich can now read in the gallery files, register the path into the database, and then generate necessary files and put them through Immichs machine learning pipeline so you can use all the goodness of Immich without the need to upload them. Since this is the initial implementation, some actions/behavior are not yet supported, and we aim to build toward them in future releases, namely:
- Assets are not automatically synced and must instead be manually synced with the CLI tool.
- Only new files that are added to the gallery will be detected.
- Deleted and moved files will not be detected.
You can find more information on how to use the feature by reading the documentation [here](/docs/features/read-only-gallery).
## Memory feature
This is considered a fun feature that the team and I wanted to build for so long, but we had to put it off because of the refactoring of the code base. The code base is now in a good enough form to circle back and add more exciting features.
This memory feature is very much similar to GPhotos' implementation of “x years since…”. We are aiming to add more categories of memories in the future, such as “Spotlight of the day” or “Day of the Week highlights”
<iframe
width="560"
height="315"
src="https://www.youtube.com/embed/j5XZKvViPew"
title="YouTube video player"
frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen
></iframe>
This feature is now available on the web and will be ported to the mobile app in the near future.
## Support XMP Sidecar
Immich can now import/upload XMP sidecars from the CLI and use the information as the metadata of assets.
## Support more raw formats.
With the recent updates on the dependencies of Immich, we are now extending and hardening support for multiple raw formats. So users with DSLR or mirrorless cameras can now upload their original files to Immich and have them displayed in high-quality thumbnails on the web and mobile view.
## Justified layout for web timeline and blurred thumbnail hash
This is an aesthetic improvement in user experience when browsing the timeline. Photos and videos are now displayed correctly with perspective orientation, making the browsing experience more pleasurable.
To further improve the browsing experience, we now added a blur hash to the thumbnail, so the transition is more natural with a dreamy fade in effect, similar to how our brain goes from faded to vivid memory
<iframe
width="560"
height="315"
src="https://www.youtube.com/embed/b95FLmGHRFc"
title="YouTube video player"
frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen
></iframe>
## Hosting machine learning container on a different machine
With more capabilities Immich is building toward, machine learning will get more powerful and therefore require more resources to run effectively. However, we understand that users might not have the best server resources where they host the Immich instance. Therefore, we changed how machine learning interacts and receives the photos and videos to run through its inference pipeline.
The machine learning container is now a headless system that can run on any machine. As long as your Immich instance can communicate with the system running the machine learning container, it can send the files and receive the required information to make Immich powerful in terms of searching and intelligence. This helps you to utilize a more powerful machine in your home/infrastructure to perform the CPU-intensive tasks while letting Immich only handle the I/O operations for a pleasant and smooth experience.
---
So, those are the highlights for the team and the community after a busy month. There are a lot more changes and improvements. I encourage you to read some release notes, starting from version [v1.57.0](https://github.com/immich-app/immich/releases/tag/v1.57.0) to now.
Thank you, and I am asking for your support for the project. I hope to be a full-time maintainer of Immich one day to dedicate myself to the project as my life works for the community and my family. You can find the support channels below:
- Monthly donation via [GitHub Sponsors](https://github.com/sponsors/alextran1502)
- One-time donation via [GitHub Sponsors](https://github.com/sponsors/alextran1502?frequency=one-time&sponsor=alextran1502)
- [Liberapay](https://liberapay.com/alex.tran1502/)
- [buymeacoffee](https://www.buymeacoffee.com/altran1502)
- Bitcoin: 1FvEp6P6NM8EZEkpGUFAN2LqJ1gxusNxZX
- Give a project a star - the contributors love gazing at the stars and seeing their creations shining in the sky.
Join our friendly [Discord](https://discord.gg/D8JsnBEuKb) to talk and discuss Immich, tech, or anything
Cheer!
Until next time!
Alex

View File

@@ -105,6 +105,11 @@ const config = {
position: 'right',
label: 'API',
},
{
to: '/blog',
position: 'right',
label: 'Blog',
},
{
href: 'https://github.com/immich-app/immich',
label: 'GitHub',

View File

@@ -21,8 +21,8 @@ ENV NODE_ENV=production \
PYTHONDONTWRITEBYTECODE=1 \
PYTHONUNBUFFERED=1 \
PATH="/opt/venv/bin:$PATH" \
PYTHONPATH=`pwd`
PYTHONPATH=/usr/src
COPY --from=builder /opt/venv /opt/venv
COPY app .
ENTRYPOINT ["python", "main.py"]
ENTRYPOINT ["python", "-m", "app.main"]

View File

@@ -11,3 +11,12 @@ Running `poetry install --no-root --with dev` will install everything you need i
To add or remove dependencies, you can use the commands `poetry add $PACKAGE_NAME` and `poetry remove $PACKAGE_NAME`, respectively.
Be sure to commit the `poetry.lock` and `pyproject.toml` files to reflect any changes in dependencies.
# Load Testing
To measure inference throughput and latency, you can use [Locust](https://locust.io/) using the provided `locustfile.py`.
Locust works by querying the model endpoints and aggregating their statistics, meaning the app must be deployed.
You can run `load_test.sh` to automatically deploy the app locally and start Locust, optionally adjusting its env variables as needed.
Alternatively, for more custom testing, you may also run `locust` directly: see the [documentation](https://docs.locust.io/en/stable/index.html). Note that in Locust's jargon, concurrency is measured in `users`, and each user runs one task at a time. To achieve a particular per-endpoint concurrency, multiply that number by the number of endpoints to be queried. For example, if there are 3 endpoints and you want each of them to receive 8 requests at a time, you should set the number of users to 24.

View File

View File

@@ -1,5 +1,10 @@
from pathlib import Path
from pydantic import BaseSettings
from .schemas import ModelType
class Settings(BaseSettings):
cache_folder: str = "/cache"
classification_model: str = "microsoft/resnet-50"
@@ -15,8 +20,12 @@ class Settings(BaseSettings):
min_face_score: float = 0.7
class Config(BaseSettings.Config):
env_prefix = 'MACHINE_LEARNING_'
env_prefix = "MACHINE_LEARNING_"
case_sensitive = False
def get_cache_dir(model_name: str, model_type: ModelType) -> Path:
return Path(settings.cache_folder, model_type.value, model_name)
settings = Settings()

View File

@@ -1,52 +1,58 @@
import os
import io
from io import BytesIO
from typing import Any
from cache import ModelCache
from schemas import (
import cv2
import numpy as np
import uvicorn
from fastapi import Body, Depends, FastAPI
from PIL import Image
from .config import settings
from .models.base import InferenceModel
from .models.cache import ModelCache
from .schemas import (
EmbeddingResponse,
FaceResponse,
TagResponse,
MessageResponse,
ModelType,
TagResponse,
TextModelRequest,
TextResponse,
)
import uvicorn
from PIL import Image
from fastapi import FastAPI, HTTPException, Depends, Body
from models import get_model, run_classification, run_facial_recognition
from config import settings
_model_cache = None
app = FastAPI()
@app.on_event("startup")
async def startup_event() -> None:
global _model_cache
_model_cache = ModelCache(ttl=settings.model_ttl, revalidate=True)
app.state.model_cache = ModelCache(ttl=settings.model_ttl, revalidate=True)
same_clip = settings.clip_image_model == settings.clip_text_model
app.state.clip_vision_type = ModelType.CLIP if same_clip else ModelType.CLIP_VISION
app.state.clip_text_type = ModelType.CLIP if same_clip else ModelType.CLIP_TEXT
models = [
(settings.classification_model, "image-classification"),
(settings.clip_image_model, "clip"),
(settings.clip_text_model, "clip"),
(settings.facial_recognition_model, "facial-recognition"),
(settings.classification_model, ModelType.IMAGE_CLASSIFICATION),
(settings.clip_image_model, app.state.clip_vision_type),
(settings.clip_text_model, app.state.clip_text_type),
(settings.facial_recognition_model, ModelType.FACIAL_RECOGNITION),
]
# Get all models
for model_name, model_type in models:
if settings.eager_startup:
await _model_cache.get_cached_model(model_name, model_type)
await app.state.model_cache.get(model_name, model_type)
else:
get_model(model_name, model_type)
InferenceModel.from_model_type(model_type, model_name)
def dep_model_cache():
if _model_cache is None:
raise HTTPException(status_code=500, detail="Unable to load model.")
def dep_pil_image(byte_image: bytes = Body(...)) -> Image.Image:
return Image.open(BytesIO(byte_image))
def dep_cv_image(byte_image: bytes = Body(...)) -> cv2.Mat:
byte_image_np = np.frombuffer(byte_image, np.uint8)
return cv2.imdecode(byte_image_np, cv2.IMREAD_COLOR)
def dep_input_image(image: bytes = Body(...)) -> Image:
return Image.open(io.BytesIO(image))
@app.get("/", response_model=MessageResponse)
async def root() -> dict[str, str]:
@@ -62,33 +68,29 @@ def ping() -> str:
"/image-classifier/tag-image",
response_model=TagResponse,
status_code=200,
dependencies=[Depends(dep_model_cache)],
)
async def image_classification(
image: Image = Depends(dep_input_image)
image: Image.Image = Depends(dep_pil_image),
) -> list[str]:
try:
model = await _model_cache.get_cached_model(
settings.classification_model, "image-classification"
)
labels = run_classification(model, image, settings.min_tag_score)
except Exception as ex:
raise HTTPException(status_code=500, detail=str(ex))
else:
return labels
model = await app.state.model_cache.get(
settings.classification_model, ModelType.IMAGE_CLASSIFICATION
)
labels = model.predict(image)
return labels
@app.post(
"/sentence-transformer/encode-image",
response_model=EmbeddingResponse,
status_code=200,
dependencies=[Depends(dep_model_cache)],
)
async def clip_encode_image(
image: Image = Depends(dep_input_image)
image: Image.Image = Depends(dep_pil_image),
) -> list[float]:
model = await _model_cache.get_cached_model(settings.clip_image_model, "clip")
embedding = model.encode(image).tolist()
model = await app.state.model_cache.get(
settings.clip_image_model, app.state.clip_vision_type
)
embedding = model.predict(image)
return embedding
@@ -96,13 +98,12 @@ async def clip_encode_image(
"/sentence-transformer/encode-text",
response_model=EmbeddingResponse,
status_code=200,
dependencies=[Depends(dep_model_cache)],
)
async def clip_encode_text(
payload: TextModelRequest
) -> list[float]:
model = await _model_cache.get_cached_model(settings.clip_text_model, "clip")
embedding = model.encode(payload.text).tolist()
async def clip_encode_text(payload: TextModelRequest) -> list[float]:
model = await app.state.model_cache.get(
settings.clip_text_model, app.state.clip_text_type
)
embedding = model.predict(payload.text)
return embedding
@@ -110,22 +111,21 @@ async def clip_encode_text(
"/facial-recognition/detect-faces",
response_model=FaceResponse,
status_code=200,
dependencies=[Depends(dep_model_cache)],
)
async def facial_recognition(
image: bytes = Body(...),
image: cv2.Mat = Depends(dep_cv_image),
) -> list[dict[str, Any]]:
model = await _model_cache.get_cached_model(
settings.facial_recognition_model, "facial-recognition"
model = await app.state.model_cache.get(
settings.facial_recognition_model, ModelType.FACIAL_RECOGNITION
)
faces = run_facial_recognition(model, image)
faces = model.predict(image)
return faces
if __name__ == "__main__":
is_dev = os.getenv("NODE_ENV") == "development"
uvicorn.run(
"main:app",
"app.main:app",
host=settings.host,
port=settings.port,
reload=is_dev,

View File

@@ -1,119 +0,0 @@
import torch
from insightface.app import FaceAnalysis
from pathlib import Path
from transformers import pipeline, Pipeline
from sentence_transformers import SentenceTransformer
from typing import Any, BinaryIO
import cv2 as cv
import numpy as np
from PIL import Image
from config import settings
device = "cuda" if torch.cuda.is_available() else "cpu"
def get_model(model_name: str, model_type: str, **model_kwargs):
"""
Instantiates the specified model.
Args:
model_name: Name of model in the model hub used for the task.
model_type: Model type or task, which determines which model zoo is used.
`facial-recognition` uses Insightface, while all other models use the HF Model Hub.
Options:
`image-classification`, `clip`,`facial-recognition`, `tokenizer`, `processor`
Returns:
model: The requested model.
"""
cache_dir = _get_cache_dir(model_name, model_type)
match model_type:
case "facial-recognition":
model = _load_facial_recognition(
model_name, cache_dir=cache_dir, **model_kwargs
)
case "clip":
model = SentenceTransformer(
model_name, cache_folder=cache_dir, **model_kwargs
)
case _:
model = pipeline(
model_type,
model_name,
model_kwargs={"cache_dir": cache_dir, **model_kwargs},
)
return model
def run_classification(
model: Pipeline, image: Image, min_score: float | None = None
):
predictions: list[dict[str, Any]] = model(image) # type: ignore
result = {
tag
for pred in predictions
for tag in pred["label"].split(", ")
if min_score is None or pred["score"] >= min_score
}
return list(result)
def run_facial_recognition(
model: FaceAnalysis, image: bytes
) -> list[dict[str, Any]]:
file_bytes = np.frombuffer(image, dtype=np.uint8)
img = cv.imdecode(file_bytes, cv.IMREAD_COLOR)
height, width, _ = img.shape
results = []
faces = model.get(img)
for face in faces:
x1, y1, x2, y2 = face.bbox
results.append(
{
"imageWidth": width,
"imageHeight": height,
"boundingBox": {
"x1": round(x1),
"y1": round(y1),
"x2": round(x2),
"y2": round(y2),
},
"score": face.det_score.item(),
"embedding": face.normed_embedding.tolist(),
}
)
return results
def _load_facial_recognition(
model_name: str,
min_face_score: float | None = None,
cache_dir: Path | str | None = None,
**model_kwargs,
):
if cache_dir is None:
cache_dir = _get_cache_dir(model_name, "facial-recognition")
if isinstance(cache_dir, Path):
cache_dir = cache_dir.as_posix()
if min_face_score is None:
min_face_score = settings.min_face_score
model = FaceAnalysis(
name=model_name,
root=cache_dir,
allowed_modules=["detection", "recognition"],
**model_kwargs,
)
model.prepare(ctx_id=0, det_thresh=min_face_score, det_size=(640, 640))
return model
def _get_cache_dir(model_name: str, model_type: str) -> Path:
return Path(settings.cache_folder, device, model_type, model_name)

View File

@@ -0,0 +1,3 @@
from .clip import CLIPSTTextEncoder, CLIPSTVisionEncoder
from .facial_recognition import FaceRecognizer
from .image_classification import ImageClassifier

View File

@@ -0,0 +1,52 @@
from __future__ import annotations
from abc import abstractmethod, ABC
from pathlib import Path
from typing import Any
from ..config import get_cache_dir
from ..schemas import ModelType
class InferenceModel(ABC):
_model_type: ModelType
def __init__(
self,
model_name: str,
cache_dir: Path | None = None,
):
self.model_name = model_name
self._cache_dir = (
cache_dir
if cache_dir is not None
else get_cache_dir(model_name, self.model_type)
)
@abstractmethod
def predict(self, inputs: Any) -> Any:
...
@property
def model_type(self) -> ModelType:
return self._model_type
@property
def cache_dir(self) -> Path:
return self._cache_dir
@cache_dir.setter
def cache_dir(self, cache_dir: Path):
self._cache_dir = cache_dir
@classmethod
def from_model_type(
cls, model_type: ModelType, model_name, **model_kwargs
) -> InferenceModel:
subclasses = {
subclass._model_type: subclass for subclass in cls.__subclasses__()
}
if model_type not in subclasses:
raise ValueError(f"Unsupported model type: {model_type}")
return subclasses[model_type](model_name, **model_kwargs)

View File

@@ -1,8 +1,11 @@
from aiocache.plugins import TimingPlugin, BasePlugin
import asyncio
from aiocache.backends.memory import SimpleMemoryCache
from aiocache.lock import OptimisticLock
from typing import Any
from models import get_model
from aiocache.plugins import BasePlugin, TimingPlugin
from ..schemas import ModelType
from .base import InferenceModel
class ModelCache:
@@ -10,7 +13,7 @@ class ModelCache:
def __init__(
self,
ttl: int | None = None,
ttl: float | None = None,
revalidate: bool = False,
timeout: int | None = None,
profiling: bool = False,
@@ -35,9 +38,9 @@ class ModelCache:
ttl=ttl, timeout=timeout, plugins=plugins, namespace=None
)
async def get_cached_model(
self, model_name: str, model_type: str, **model_kwargs
) -> Any:
async def get(
self, model_name: str, model_type: ModelType, **model_kwargs
) -> InferenceModel:
"""
Args:
model_name: Name of model in the model hub used for the task.
@@ -47,11 +50,16 @@ class ModelCache:
model: The requested model.
"""
key = self.cache.build_key(model_name, model_type)
key = self.cache.build_key(model_name, model_type.value)
model = await self.cache.get(key)
if model is None:
async with OptimisticLock(self.cache, key) as lock:
model = get_model(model_name, model_type, **model_kwargs)
model = await asyncio.get_running_loop().run_in_executor(
None,
lambda: InferenceModel.from_model_type(
model_type, model_name, **model_kwargs
),
)
await lock.cas(model, ttl=self.ttl)
return model

View File

@@ -0,0 +1,37 @@
from pathlib import Path
from PIL.Image import Image
from sentence_transformers import SentenceTransformer
from ..schemas import ModelType
from .base import InferenceModel
class CLIPSTEncoder(InferenceModel):
_model_type = ModelType.CLIP
def __init__(
self,
model_name: str,
cache_dir: Path | None = None,
**model_kwargs,
):
super().__init__(model_name, cache_dir)
self.model = SentenceTransformer(
self.model_name,
cache_folder=self.cache_dir.as_posix(),
**model_kwargs,
)
def predict(self, image_or_text: Image | str) -> list[float]:
return self.model.encode(image_or_text).tolist()
# stubs to allow different behavior between the two in the future
# and handle loading different image and text clip models
class CLIPSTVisionEncoder(CLIPSTEncoder):
_model_type = ModelType.CLIP_VISION
class CLIPSTTextEncoder(CLIPSTEncoder):
_model_type = ModelType.CLIP_TEXT

View File

@@ -0,0 +1,59 @@
from pathlib import Path
from typing import Any
import cv2
from insightface.app import FaceAnalysis
from ..config import settings
from ..schemas import ModelType
from .base import InferenceModel
class FaceRecognizer(InferenceModel):
_model_type = ModelType.FACIAL_RECOGNITION
def __init__(
self,
model_name: str,
min_score: float = settings.min_face_score,
cache_dir: Path | None = None,
**model_kwargs,
):
super().__init__(model_name, cache_dir)
self.min_score = min_score
model = FaceAnalysis(
name=self.model_name,
root=self.cache_dir.as_posix(),
allowed_modules=["detection", "recognition"],
**model_kwargs,
)
model.prepare(
ctx_id=0,
det_thresh=self.min_score,
det_size=(640, 640),
)
self.model = model
def predict(self, image: cv2.Mat) -> list[dict[str, Any]]:
height, width, _ = image.shape
results = []
faces = self.model.get(image)
for face in faces:
x1, y1, x2, y2 = face.bbox
results.append(
{
"imageWidth": width,
"imageHeight": height,
"boundingBox": {
"x1": round(x1),
"y1": round(y1),
"x2": round(x2),
"y2": round(y2),
},
"score": face.det_score.item(),
"embedding": face.normed_embedding.tolist(),
}
)
return results

View File

@@ -0,0 +1,40 @@
from pathlib import Path
from PIL.Image import Image
from transformers.pipelines import pipeline
from ..config import settings
from ..schemas import ModelType
from .base import InferenceModel
class ImageClassifier(InferenceModel):
_model_type = ModelType.IMAGE_CLASSIFICATION
def __init__(
self,
model_name: str,
min_score: float = settings.min_tag_score,
cache_dir: Path | None = None,
**model_kwargs,
):
super().__init__(model_name, cache_dir)
self.min_score = min_score
self.model = pipeline(
self.model_type.value,
self.model_name,
model_kwargs={"cache_dir": self.cache_dir, **model_kwargs},
)
def predict(self, image: Image) -> list[str]:
predictions = self.model(image)
tags = list(
{
tag
for pred in predictions
for tag in pred["label"].split(", ")
if pred["score"] >= self.min_score
}
)
return tags

View File

@@ -1,3 +1,5 @@
from enum import Enum
from pydantic import BaseModel
@@ -54,3 +56,11 @@ class Face(BaseModel):
class FaceResponse(BaseModel):
__root__: list[Face]
class ModelType(Enum):
IMAGE_CLASSIFICATION = "image-classification"
CLIP = "clip"
CLIP_VISION = "clip-vision"
CLIP_TEXT = "clip-text"
FACIAL_RECOGNITION = "facial-recognition"

24
machine-learning/load_test.sh Executable file
View File

@@ -0,0 +1,24 @@
export MACHINE_LEARNING_CACHE_FOLDER=/tmp/model_cache
export MACHINE_LEARNING_MIN_FACE_SCORE=0.034 # returns 1 face per request; setting this to 0 blows up the number of faces to the thousands
export MACHINE_LEARNING_MIN_TAG_SCORE=0.0
export PID_FILE=/tmp/locust_pid
export LOG_FILE=/tmp/gunicorn.log
export HEADLESS=false
export HOST=127.0.0.1:3003
export CONCURRENCY=4
export NUM_ENDPOINTS=3
export PYTHONPATH=app
gunicorn app.main:app --worker-class uvicorn.workers.UvicornWorker \
--bind $HOST --daemon --error-logfile $LOG_FILE --pid $PID_FILE
while true ; do
echo "Loading models..."
sleep 5
if cat $LOG_FILE | grep -q -E "startup complete"; then break; fi
done
# "users" are assigned only one task, so multiply concurrency by the number of tasks
locust --host http://$HOST --web-host 127.0.0.1 \
--run-time 120s --users $(($CONCURRENCY * $NUM_ENDPOINTS)) $(if $HEADLESS; then echo "--headless"; fi)
if [[ -e $PID_FILE ]]; then kill $(cat $PID_FILE); fi

View File

@@ -0,0 +1,52 @@
from io import BytesIO
from locust import HttpUser, events, task
from PIL import Image
@events.test_start.add_listener
def on_test_start(environment, **kwargs):
global byte_image
image = Image.new("RGB", (1000, 1000))
byte_image = BytesIO()
image.save(byte_image, format="jpeg")
class InferenceLoadTest(HttpUser):
abstract: bool = True
host = "http://127.0.0.1:3003"
data: bytes
headers: dict[str, str] = {"Content-Type": "image/jpg"}
# re-use the image across all instances in a process
def on_start(self):
global byte_image
self.data = byte_image.getvalue()
class ClassificationLoadTest(InferenceLoadTest):
@task
def classify(self):
self.client.post(
"/image-classifier/tag-image", data=self.data, headers=self.headers
)
class CLIPLoadTest(InferenceLoadTest):
@task
def encode_image(self):
self.client.post(
"/sentence-transformer/encode-image",
data=self.data,
headers=self.headers,
)
class RecognitionLoadTest(InferenceLoadTest):
@task
def recognize(self):
self.client.post(
"/facial-recognition/detect-faces",
data=self.data,
headers=self.headers,
)

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "machine-learning"
version = "1.59.1"
version = "1.64.0"
description = ""
authors = ["Hau Tran <alex.tran1502@gmail.com>"]
readme = "README.md"
@@ -27,6 +27,8 @@ aiocache = "^0.12.1"
mypy = "^1.3.0"
black = "^23.3.0"
pytest = "^7.3.1"
locust = "^2.15.1"
gunicorn = "^20.1.0"
[[tool.poetry.source]]
name = "pytorch-cpu"

View File

@@ -35,8 +35,8 @@ platform :android do
task: 'bundle',
build_type: 'Release',
properties: {
"android.injected.version.code" => 86,
"android.injected.version.name" => "1.63.1",
"android.injected.version.code" => 87,
"android.injected.version.name" => "1.64.0",
}
)
upload_to_play_store(skip_upload_apk: true, skip_upload_images: true, skip_upload_screenshots: true, aab: '../build/app/outputs/bundle/release/app-release.aab')

View File

@@ -19,7 +19,7 @@ platform :ios do
desc "iOS Beta"
lane :beta do
increment_version_number(
version_number: "1.63.1"
version_number: "1.64.0"
)
increment_build_number(
build_number: latest_testflight_build_number + 1,

View File

@@ -0,0 +1,21 @@
import 'package:hooks_riverpod/hooks_riverpod.dart';
final showControlsProvider = StateNotifierProvider<ShowControls, bool>((ref) {
return ShowControls(ref);
});
class ShowControls extends StateNotifier<bool> {
ShowControls(this.ref) : super(true);
final Ref ref;
bool get show => state;
set show(bool value) {
state = value;
}
void toggle() {
state = !state;
}
}

View File

@@ -0,0 +1,46 @@
import 'package:hooks_riverpod/hooks_riverpod.dart';
class VideoPlaybackControls {
VideoPlaybackControls({required this.position, required this.mute});
final double position;
final bool mute;
}
final videoPlayerControlsProvider =
StateNotifierProvider<VideoPlayerControls, VideoPlaybackControls>((ref) {
return VideoPlayerControls(ref);
});
class VideoPlayerControls extends StateNotifier<VideoPlaybackControls> {
VideoPlayerControls(this.ref)
: super(
VideoPlaybackControls(
position: 0,
mute: false,
),
);
final Ref ref;
VideoPlaybackControls get value => state;
set value(VideoPlaybackControls value) {
state = value;
}
double get position => state.position;
bool get mute => state.mute;
set position(double value) {
state = VideoPlaybackControls(position: value, mute: state.mute);
}
set mute(bool value) {
state = VideoPlaybackControls(position: state.position, mute: value);
}
void toggleMute() {
state = VideoPlaybackControls(position: state.position, mute: !state.mute);
}
}

View File

@@ -0,0 +1,35 @@
import 'package:hooks_riverpod/hooks_riverpod.dart';
class VideoPlaybackValue {
VideoPlaybackValue({required this.position, required this.duration});
final Duration position;
final Duration duration;
}
final videoPlaybackValueProvider =
StateNotifierProvider<VideoPlaybackValueState, VideoPlaybackValue>((ref) {
return VideoPlaybackValueState(ref);
});
class VideoPlaybackValueState extends StateNotifier<VideoPlaybackValue> {
VideoPlaybackValueState(this.ref)
: super(
VideoPlaybackValue(
position: Duration.zero,
duration: Duration.zero,
),
);
final Ref ref;
VideoPlaybackValue get value => state;
set value(VideoPlaybackValue value) {
state = value;
}
set position(Duration value) {
state = VideoPlaybackValue(position: value, duration: state.duration);
}
}

View File

@@ -0,0 +1,57 @@
import 'package:flutter/material.dart';
/// A widget that animates implicitly between a play and a pause icon.
class AnimatedPlayPause extends StatefulWidget {
const AnimatedPlayPause({
Key? key,
required this.playing,
this.size,
this.color,
}) : super(key: key);
final double? size;
final bool playing;
final Color? color;
@override
State<StatefulWidget> createState() => AnimatedPlayPauseState();
}
class AnimatedPlayPauseState extends State<AnimatedPlayPause>
with SingleTickerProviderStateMixin {
late final animationController = AnimationController(
vsync: this,
value: widget.playing ? 1 : 0,
duration: const Duration(milliseconds: 300),
);
@override
void didUpdateWidget(AnimatedPlayPause oldWidget) {
super.didUpdateWidget(oldWidget);
if (widget.playing != oldWidget.playing) {
if (widget.playing) {
animationController.forward();
} else {
animationController.reverse();
}
}
}
@override
void dispose() {
animationController.dispose();
super.dispose();
}
@override
Widget build(BuildContext context) {
return Center(
child: AnimatedIcon(
color: widget.color,
size: widget.size,
icon: AnimatedIcons.play_pause,
progress: animationController,
),
);
}
}

View File

@@ -0,0 +1,53 @@
import 'package:flutter/material.dart';
import 'package:immich_mobile/modules/asset_viewer/ui/animated_play_pause.dart';
class CenterPlayButton extends StatelessWidget {
const CenterPlayButton({
Key? key,
required this.backgroundColor,
this.iconColor,
required this.show,
required this.isPlaying,
required this.isFinished,
this.onPressed,
}) : super(key: key);
final Color backgroundColor;
final Color? iconColor;
final bool show;
final bool isPlaying;
final bool isFinished;
final VoidCallback? onPressed;
@override
Widget build(BuildContext context) {
return ColoredBox(
color: Colors.transparent,
child: Center(
child: UnconstrainedBox(
child: AnimatedOpacity(
opacity: show ? 1.0 : 0.0,
duration: const Duration(milliseconds: 100),
child: DecoratedBox(
decoration: BoxDecoration(
color: backgroundColor,
shape: BoxShape.circle,
),
child: IconButton(
iconSize: 32,
padding: const EdgeInsets.all(12.0),
icon: isFinished
? Icon(Icons.replay, color: iconColor)
: AnimatedPlayPause(
color: iconColor,
playing: isPlaying,
),
onPressed: onPressed,
),
),
),
),
),
);
}
}

View File

@@ -0,0 +1,207 @@
import 'dart:async';
import 'package:chewie/chewie.dart';
import 'package:flutter/material.dart';
import 'package:hooks_riverpod/hooks_riverpod.dart';
import 'package:immich_mobile/modules/asset_viewer/providers/show_controls.provider.dart';
import 'package:immich_mobile/modules/asset_viewer/providers/video_player_controls_provider.dart';
import 'package:immich_mobile/modules/asset_viewer/providers/video_player_value_provider.dart';
import 'package:immich_mobile/modules/asset_viewer/ui/center_play_button.dart';
import 'package:immich_mobile/shared/ui/immich_loading_indicator.dart';
import 'package:video_player/video_player.dart';
class VideoPlayerControls extends ConsumerStatefulWidget {
const VideoPlayerControls({
Key? key,
}) : super(key: key);
@override
VideoPlayerControlsState createState() => VideoPlayerControlsState();
}
class VideoPlayerControlsState extends ConsumerState<VideoPlayerControls>
with SingleTickerProviderStateMixin {
late VideoPlayerController controller;
late VideoPlayerValue _latestValue;
bool _displayBufferingIndicator = false;
double? _latestVolume;
Timer? _hideTimer;
ChewieController? _chewieController;
ChewieController get chewieController => _chewieController!;
@override
Widget build(BuildContext context) {
ref.listen(videoPlayerControlsProvider.select((value) => value.mute),
(_, value) {
_mute(value);
_cancelAndRestartTimer();
});
ref.listen(videoPlayerControlsProvider.select((value) => value.position),
(_, position) {
_seekTo(position);
_cancelAndRestartTimer();
});
if (_latestValue.hasError) {
return chewieController.errorBuilder?.call(
context,
chewieController.videoPlayerController.value.errorDescription!,
) ??
const Center(
child: Icon(
Icons.error,
color: Colors.white,
size: 42,
),
);
}
return GestureDetector(
onTap: () => _cancelAndRestartTimer(),
child: AbsorbPointer(
absorbing: !ref.watch(showControlsProvider),
child: Stack(
children: [
if (_displayBufferingIndicator)
const Center(
child: ImmichLoadingIndicator(),
)
else
_buildHitArea(),
],
),
),
);
}
@override
void dispose() {
_dispose();
super.dispose();
}
void _dispose() {
controller.removeListener(_updateState);
_hideTimer?.cancel();
}
@override
void didChangeDependencies() {
final oldController = _chewieController;
_chewieController = ChewieController.of(context);
controller = chewieController.videoPlayerController;
if (oldController != chewieController) {
_dispose();
_initialize();
}
super.didChangeDependencies();
}
Widget _buildHitArea() {
final bool isFinished = _latestValue.position >= _latestValue.duration;
return GestureDetector(
onTap: () {
if (_latestValue.isPlaying) {
ref.read(showControlsProvider.notifier).show = false;
} else {
_playPause();
ref.read(showControlsProvider.notifier).show = false;
}
},
child: CenterPlayButton(
backgroundColor: Colors.black54,
iconColor: Colors.white,
isFinished: isFinished,
isPlaying: controller.value.isPlaying,
show: ref.watch(showControlsProvider),
onPressed: _playPause,
),
);
}
void _cancelAndRestartTimer() {
_hideTimer?.cancel();
_startHideTimer();
ref.read(showControlsProvider.notifier).show = true;
}
Future<void> _initialize() async {
_mute(ref.read(videoPlayerControlsProvider.select((value) => value.mute)));
controller.addListener(_updateState);
_latestValue = controller.value;
if (controller.value.isPlaying || chewieController.autoPlay) {
_startHideTimer();
}
}
void _playPause() {
final isFinished = _latestValue.position >= _latestValue.duration;
setState(() {
if (controller.value.isPlaying) {
ref.read(showControlsProvider.notifier).show = true;
_hideTimer?.cancel();
controller.pause();
} else {
_cancelAndRestartTimer();
if (!controller.value.isInitialized) {
controller.initialize().then((_) {
controller.play();
});
} else {
if (isFinished) {
controller.seekTo(Duration.zero);
}
controller.play();
}
}
});
}
void _startHideTimer() {
final hideControlsTimer = chewieController.hideControlsTimer.isNegative
? ChewieController.defaultHideControlsTimer
: chewieController.hideControlsTimer;
_hideTimer = Timer(hideControlsTimer, () {
ref.read(showControlsProvider.notifier).show = false;
});
}
void _updateState() {
if (!mounted) return;
_displayBufferingIndicator = controller.value.isBuffering;
setState(() {
_latestValue = controller.value;
ref.read(videoPlaybackValueProvider.notifier).value = VideoPlaybackValue(
position: _latestValue.position,
duration: _latestValue.duration,
);
});
}
void _mute(bool mute) {
if (mute) {
_latestVolume = controller.value.volume;
controller.setVolume(0);
} else {
controller.setVolume(_latestVolume ?? 0.5);
}
}
void _seekTo(double position) {
final Duration pos = controller.value.duration * (position / 100.0);
if (pos != controller.value.position) {
controller.seekTo(pos);
}
}
}

View File

@@ -1,4 +1,5 @@
import 'dart:io';
import 'dart:math';
import 'package:easy_localization/easy_localization.dart';
import 'package:auto_route/auto_route.dart';
import 'package:cached_network_image/cached_network_image.dart';
@@ -6,8 +7,11 @@ import 'package:flutter/material.dart';
import 'package:flutter/services.dart';
import 'package:flutter_hooks/flutter_hooks.dart' hide Store;
import 'package:hooks_riverpod/hooks_riverpod.dart';
import 'package:immich_mobile/modules/asset_viewer/providers/show_controls.provider.dart';
import 'package:immich_mobile/modules/asset_viewer/providers/video_player_controls_provider.dart';
import 'package:immich_mobile/modules/album/ui/add_to_album_bottom_sheet.dart';
import 'package:immich_mobile/modules/asset_viewer/providers/image_viewer_page_state.provider.dart';
import 'package:immich_mobile/modules/asset_viewer/providers/video_player_value_provider.dart';
import 'package:immich_mobile/modules/asset_viewer/ui/advanced_bottom_sheet.dart';
import 'package:immich_mobile/modules/asset_viewer/ui/exif_bottom_sheet.dart';
import 'package:immich_mobile/modules/asset_viewer/ui/top_control_app_bar.dart';
@@ -49,9 +53,9 @@ class GalleryViewerPage extends HookConsumerWidget {
final isLoadPreview = useState(AppSettingsEnum.loadPreview.defaultValue);
final isLoadOriginal = useState(AppSettingsEnum.loadOriginal.defaultValue);
final isZoomed = useState<bool>(false);
final showAppBar = useState<bool>(true);
final isPlayingMotionVideo = useState(false);
final isPlayingVideo = useState(false);
final progressValue = useState(0.0);
Offset? localPosition;
final authToken = 'Bearer ${Store.get(StoreKey.accessToken)}';
final currentIndex = useState(initialIndex);
@@ -60,15 +64,6 @@ class GalleryViewerPage extends HookConsumerWidget {
Asset asset() => watchedAsset.value ?? currentAsset;
showAppBar.addListener(() {
// Change to and from immersive mode, hiding navigation and app bar
if (showAppBar.value) {
SystemChrome.setEnabledSystemUIMode(SystemUiMode.edgeToEdge);
} else {
SystemChrome.setEnabledSystemUIMode(SystemUiMode.immersive);
}
});
useEffect(
() {
isLoadPreview.value =
@@ -277,15 +272,11 @@ class GalleryViewerPage extends HookConsumerWidget {
}
buildAppBar() {
final show = (showAppBar.value || // onTap has the final say
(showAppBar.value && !isZoomed.value)) &&
!isPlayingVideo.value;
return IgnorePointer(
ignoring: !show,
ignoring: !ref.watch(showControlsProvider),
child: AnimatedOpacity(
duration: const Duration(milliseconds: 100),
opacity: show ? 1.0 : 0.0,
opacity: ref.watch(showControlsProvider) ? 1.0 : 0.0,
child: Container(
color: Colors.black.withOpacity(0.4),
child: TopControlAppBar(
@@ -313,65 +304,160 @@ class GalleryViewerPage extends HookConsumerWidget {
);
}
buildBottomBar() {
final show = (showAppBar.value || // onTap has the final say
(showAppBar.value && !isZoomed.value)) &&
!isPlayingVideo.value;
Widget buildProgressBar() {
final playerValue = ref.watch(videoPlaybackValueProvider);
return Expanded(
child: Slider(
value: playerValue.duration == Duration.zero
? 0.0
: min(
playerValue.position.inMicroseconds /
playerValue.duration.inMicroseconds *
100,
100,
),
min: 0,
max: 100,
thumbColor: Colors.white,
activeColor: Colors.white,
inactiveColor: Colors.white.withOpacity(0.75),
onChanged: (position) {
progressValue.value = position;
ref.read(videoPlayerControlsProvider.notifier).position = position;
},
),
);
}
Text buildPosition() {
final position = ref
.watch(videoPlaybackValueProvider.select((value) => value.position));
return Text(
_formatDuration(position),
style: TextStyle(
fontSize: 14.0,
color: Colors.white.withOpacity(.75),
fontWeight: FontWeight.normal,
),
);
}
Text buildDuration() {
final duration = ref
.watch(videoPlaybackValueProvider.select((value) => value.duration));
return Text(
_formatDuration(duration),
style: TextStyle(
fontSize: 14.0,
color: Colors.white.withOpacity(.75),
fontWeight: FontWeight.normal,
),
);
}
Widget buildMuteButton() {
return IconButton(
icon: Icon(
ref.watch(videoPlayerControlsProvider.select((value) => value.mute))
? Icons.volume_off
: Icons.volume_up,
),
onPressed: () =>
ref.read(videoPlayerControlsProvider.notifier).toggleMute(),
color: Colors.white,
);
}
buildBottomBar() {
return IgnorePointer(
ignoring: !show,
ignoring: !ref.watch(showControlsProvider),
child: AnimatedOpacity(
duration: const Duration(milliseconds: 100),
opacity: show ? 1.0 : 0.0,
child: BottomNavigationBar(
backgroundColor: Colors.black.withOpacity(0.4),
unselectedIconTheme: const IconThemeData(color: Colors.white),
selectedIconTheme: const IconThemeData(color: Colors.white),
unselectedLabelStyle: const TextStyle(color: Colors.black),
selectedLabelStyle: const TextStyle(color: Colors.black),
showSelectedLabels: false,
showUnselectedLabels: false,
items: [
BottomNavigationBarItem(
icon: const Icon(Icons.ios_share_rounded),
label: 'control_bottom_app_bar_share'.tr(),
tooltip: 'control_bottom_app_bar_share'.tr(),
),
asset().isArchived
? BottomNavigationBarItem(
icon: const Icon(Icons.unarchive_rounded),
label: 'control_bottom_app_bar_unarchive'.tr(),
tooltip: 'control_bottom_app_bar_unarchive'.tr(),
)
: BottomNavigationBarItem(
icon: const Icon(Icons.archive_outlined),
label: 'control_bottom_app_bar_archive'.tr(),
tooltip: 'control_bottom_app_bar_archive'.tr(),
opacity: ref.watch(showControlsProvider) ? 1.0 : 0.0,
child: Column(
children: [
Visibility(
visible: !asset().isImage && !isPlayingMotionVideo.value,
child: Container(
color: Colors.black.withOpacity(0.4),
child: Padding(
padding: MediaQuery.of(context).orientation ==
Orientation.portrait
? const EdgeInsets.symmetric(horizontal: 12.0)
: const EdgeInsets.symmetric(horizontal: 64.0),
child: Row(
children: [
buildPosition(),
buildProgressBar(),
buildDuration(),
buildMuteButton(),
],
),
BottomNavigationBarItem(
icon: const Icon(Icons.delete_outline),
label: 'control_bottom_app_bar_delete'.tr(),
tooltip: 'control_bottom_app_bar_delete'.tr(),
),
),
),
BottomNavigationBar(
backgroundColor: Colors.black.withOpacity(0.4),
unselectedIconTheme: const IconThemeData(color: Colors.white),
selectedIconTheme: const IconThemeData(color: Colors.white),
unselectedLabelStyle: const TextStyle(color: Colors.black),
selectedLabelStyle: const TextStyle(color: Colors.black),
showSelectedLabels: false,
showUnselectedLabels: false,
items: [
BottomNavigationBarItem(
icon: const Icon(Icons.ios_share_rounded),
label: 'control_bottom_app_bar_share'.tr(),
tooltip: 'control_bottom_app_bar_share'.tr(),
),
asset().isArchived
? BottomNavigationBarItem(
icon: const Icon(Icons.unarchive_rounded),
label: 'control_bottom_app_bar_unarchive'.tr(),
tooltip: 'control_bottom_app_bar_unarchive'.tr(),
)
: BottomNavigationBarItem(
icon: const Icon(Icons.archive_outlined),
label: 'control_bottom_app_bar_archive'.tr(),
tooltip: 'control_bottom_app_bar_archive'.tr(),
),
BottomNavigationBarItem(
icon: const Icon(Icons.delete_outline),
label: 'control_bottom_app_bar_delete'.tr(),
tooltip: 'control_bottom_app_bar_delete'.tr(),
),
],
onTap: (index) {
switch (index) {
case 0:
shareAsset();
break;
case 1:
handleArchive(asset());
break;
case 2:
handleDelete(asset());
break;
}
},
),
],
onTap: (index) {
switch (index) {
case 0:
shareAsset();
break;
case 1:
handleArchive(asset());
break;
case 2:
handleDelete(asset());
break;
}
},
),
),
);
}
ref.listen(showControlsProvider, (_, show) {
if (show) {
SystemChrome.setEnabledSystemUIMode(SystemUiMode.edgeToEdge);
} else {
SystemChrome.setEnabledSystemUIMode(SystemUiMode.immersive);
}
});
ImageProvider imageProvider(Asset asset) {
if (asset.isLocal) {
return localImageProvider(asset);
@@ -405,7 +491,6 @@ class GalleryViewerPage extends HookConsumerWidget {
PhotoViewGallery.builder(
scaleStateChangedCallback: (state) {
isZoomed.value = state != PhotoViewScaleState.initial;
showAppBar.value = !isZoomed.value;
},
pageController: controller,
scrollPhysics: isZoomed.value
@@ -426,6 +511,8 @@ class GalleryViewerPage extends HookConsumerWidget {
precacheNextImage(value - 1);
}
currentIndex.value = value;
progressValue.value = 0.0;
HapticFeedback.selectionClick();
},
loadingBuilder: isLoadPreview.value
@@ -493,8 +580,9 @@ class GalleryViewerPage extends HookConsumerWidget {
localPosition = details.localPosition,
onDragUpdate: (_, details, __) =>
handleSwipeUpDown(details),
onTapDown: (_, __, ___) =>
showAppBar.value = !showAppBar.value,
onTapDown: (_, __, ___) {
ref.read(showControlsProvider.notifier).toggle();
},
imageProvider: provider,
heroAttributes: PhotoViewHeroAttributes(
tag: asset.id,
@@ -519,7 +607,7 @@ class GalleryViewerPage extends HookConsumerWidget {
filterQuality: FilterQuality.high,
maxScale: 1.0,
minScale: 1.0,
basePosition: Alignment.bottomCenter,
basePosition: Alignment.center,
child: VideoViewerPage(
onPlaying: () => isPlayingVideo.value = true,
onPaused: () => isPlayingVideo.value = false,
@@ -559,4 +647,37 @@ class GalleryViewerPage extends HookConsumerWidget {
),
);
}
String _formatDuration(Duration position) {
final ms = position.inMilliseconds;
int seconds = ms ~/ 1000;
final int hours = seconds ~/ 3600;
seconds = seconds % 3600;
final minutes = seconds ~/ 60;
seconds = seconds % 60;
final hoursString = hours >= 10
? '$hours'
: hours == 0
? '00'
: '0$hours';
final minutesString = minutes >= 10
? '$minutes'
: minutes == 0
? '00'
: '0$minutes';
final secondsString = seconds >= 10
? '$seconds'
: seconds == 0
? '00'
: '0$seconds';
final formattedTime =
'${hoursString == '00' ? '' : '$hoursString:'}$minutesString:$secondsString';
return formattedTime;
}
}

View File

@@ -5,11 +5,13 @@ import 'package:hooks_riverpod/hooks_riverpod.dart';
import 'package:chewie/chewie.dart';
import 'package:immich_mobile/modules/asset_viewer/models/image_viewer_page_state.model.dart';
import 'package:immich_mobile/modules/asset_viewer/providers/image_viewer_page_state.provider.dart';
import 'package:immich_mobile/modules/asset_viewer/ui/video_player_controls.dart';
import 'package:immich_mobile/shared/models/asset.dart';
import 'package:immich_mobile/shared/models/store.dart';
import 'package:immich_mobile/shared/ui/immich_loading_indicator.dart';
import 'package:photo_manager/photo_manager.dart';
import 'package:video_player/video_player.dart';
import 'package:wakelock/wakelock.dart';
// ignore: must_be_immutable
class VideoViewerPage extends HookConsumerWidget {
@@ -130,13 +132,16 @@ class _VideoPlayerState extends State<VideoPlayer> {
videoPlayerController.addListener(() {
if (videoPlayerController.value.isInitialized) {
if (videoPlayerController.value.isPlaying) {
Wakelock.enable();
widget.onPlaying?.call();
} else if (!videoPlayerController.value.isPlaying) {
Wakelock.disable();
widget.onPaused?.call();
}
if (videoPlayerController.value.position ==
videoPlayerController.value.duration) {
Wakelock.disable();
widget.onVideoEnded();
}
}
@@ -170,9 +175,10 @@ class _VideoPlayerState extends State<VideoPlayer> {
videoPlayerController: videoPlayerController,
autoPlay: true,
autoInitialize: true,
allowFullScreen: true,
allowFullScreen: false,
allowedScreenSleep: false,
showControls: !widget.isMotionVideo,
customControls: const VideoPlayerControls(),
hideControlsTimer: const Duration(seconds: 5),
);
}

View File

@@ -16,7 +16,9 @@ import 'package:immich_mobile/shared/providers/db.provider.dart';
import 'package:immich_mobile/shared/services/api.service.dart';
import 'package:immich_mobile/utils/files_helper.dart';
import 'package:isar/isar.dart';
import 'package:logging/logging.dart';
import 'package:openapi/api.dart';
import 'package:permission_handler/permission_handler.dart';
import 'package:photo_manager/photo_manager.dart';
import 'package:http_parser/http_parser.dart';
import 'package:path/path.dart' as p;
@@ -33,6 +35,7 @@ class BackupService {
final httpClient = http.Client();
final ApiService _apiService;
final Isar _db;
final Logger _log = Logger("BackupService");
BackupService(this._apiService, this._db);
@@ -203,6 +206,14 @@ class BackupService {
Function(CurrentUploadAsset) setCurrentUploadAssetCb,
Function(ErrorUploadAsset) errorCb,
) async {
if (Platform.isAndroid &&
!(await Permission.accessMediaLocation.status).isGranted) {
// double check that permission is granted here, to guard against
// uploading corrupt assets without EXIF information
_log.warning("Media location permission is not granted. "
"Cannot access original assets for backup.");
return false;
}
final String deviceId = Store.get(StoreKey.deviceId);
final String savedEndpoint = Store.get(StoreKey.serverEndpoint);
File? file;

View File

@@ -1,4 +1,5 @@
import 'package:immich_mobile/shared/services/api.service.dart';
import 'package:logging/logging.dart';
import 'package:openapi/api.dart';
import 'package:flutter_web_auth/flutter_web_auth.dart';
@@ -7,7 +8,7 @@ import 'package:flutter_web_auth/flutter_web_auth.dart';
class OAuthService {
final ApiService _apiService;
final callbackUrlScheme = 'app.immich';
final log = Logger('OAuthService');
OAuthService(this._apiService);
Future<OAuthConfigResponseDto?> getOAuthServerConfig(
@@ -33,7 +34,8 @@ class OAuthService {
url: result,
),
);
} catch (e) {
} catch (e, stack) {
log.severe("Error performing oAuthLogin: ${e.toString()}", e, stack);
return null;
}
}

View File

@@ -6,7 +6,7 @@ import 'package:permission_handler/permission_handler.dart';
class GalleryPermissionNotifier extends StateNotifier<PermissionStatus> {
GalleryPermissionNotifier()
: super(PermissionStatus.denied) // Denied is the intitial state
: super(PermissionStatus.denied) // Denied is the intitial state
{
// Sets the initial state
getGalleryPermissionStatus();
@@ -16,19 +16,20 @@ class GalleryPermissionNotifier extends StateNotifier<PermissionStatus> {
/// Requests the gallery permission
Future<PermissionStatus> requestGalleryPermission() async {
PermissionStatus result;
// Android 32 and below uses Permission.storage
if (Platform.isAndroid) {
final androidInfo = await DeviceInfoPlugin().androidInfo;
if (androidInfo.version.sdkInt <= 32) {
// Android 32 and below need storage
final permission = await Permission.storage.request();
state = permission;
return permission;
result = permission;
} else {
// Android 33 need photo & video
final photos = await Permission.photos.request();
if (!photos.isGranted) {
// Don't ask twice for the same permission
state = photos;
return photos;
}
final videos = await Permission.videos.request();
@@ -45,28 +46,32 @@ class GalleryPermissionNotifier extends StateNotifier<PermissionStatus> {
status = PermissionStatus.denied;
}
state = status;
return status;
result = status;
}
if (result == PermissionStatus.granted &&
androidInfo.version.sdkInt >= 29) {
result = await Permission.accessMediaLocation.request();
}
} else {
// iOS can use photos
final photos = await Permission.photos.request();
state = photos;
return photos;
result = photos;
}
state = result;
return result;
}
/// Checks the current state of the gallery permissions without
/// requesting them again
Future<PermissionStatus> getGalleryPermissionStatus() async {
PermissionStatus result;
// Android 32 and below uses Permission.storage
if (Platform.isAndroid) {
final androidInfo = await DeviceInfoPlugin().androidInfo;
if (androidInfo.version.sdkInt <= 32) {
// Android 32 and below need storage
final permission = await Permission.storage.status;
state = permission;
return permission;
result = permission;
} else {
// Android 33 needs photo & video
final photos = await Permission.photos.status;
@@ -84,18 +89,23 @@ class GalleryPermissionNotifier extends StateNotifier<PermissionStatus> {
status = PermissionStatus.denied;
}
state = status;
return status;
result = status;
}
if (state == PermissionStatus.granted &&
androidInfo.version.sdkInt >= 29) {
result = await Permission.accessMediaLocation.status;
}
} else {
// iOS can use photos
final photos = await Permission.photos.status;
state = photos;
return photos;
result = photos;
}
state = result;
return result;
}
}
final galleryPermissionNotifier
= StateNotifierProvider<GalleryPermissionNotifier, PermissionStatus>
((ref) => GalleryPermissionNotifier());
final galleryPermissionNotifier =
StateNotifierProvider<GalleryPermissionNotifier, PermissionStatus>(
(ref) => GalleryPermissionNotifier(),
);

View File

@@ -82,8 +82,12 @@ class AssetService {
_db.writeTxn(() => _db.eTags.put(ETag(id: user.id, value: newETag)));
}
return assets.map(Asset.remote).toList();
} catch (e, stack) {
log.severe('Error while getting remote assets', e, stack);
} catch (error, stack) {
log.severe(
'Error while getting remote assets: ${error.toString()}',
error,
stack,
);
return null;
}
}
@@ -100,8 +104,8 @@ class AssetService {
return await _apiService.assetApi
.deleteAsset(DeleteAssetDto(ids: payload));
} catch (e) {
debugPrint("Error getAllAsset ${e.toString()}");
} catch (error, stack) {
log.severe("Error deleteAssets ${error.toString()}", error, stack);
return null;
}
}

View File

@@ -24,6 +24,10 @@ ThemeData base = ThemeData(
chipTheme: const ChipThemeData(
side: BorderSide.none,
),
sliderTheme: const SliderThemeData(
thumbShape: RoundSliderThumbShape(enabledThumbRadius: 7),
trackHeight: 2.0,
),
);
ThemeData immichLightTheme = ThemeData(
@@ -99,6 +103,7 @@ ThemeData immichLightTheme = ThemeData(
),
),
chipTheme: base.chipTheme,
sliderTheme: base.sliderTheme,
popupMenuTheme: const PopupMenuThemeData(
shape: RoundedRectangleBorder(
borderRadius: BorderRadius.all(Radius.circular(10)),
@@ -218,6 +223,7 @@ ThemeData immichDarkTheme = ThemeData(
),
),
chipTheme: base.chipTheme,
sliderTheme: base.sliderTheme,
popupMenuTheme: const PopupMenuThemeData(
shape: RoundedRectangleBorder(
borderRadius: BorderRadius.all(Radius.circular(10)),

View File

@@ -3,7 +3,7 @@ Immich API
This Dart package is automatically generated by the [OpenAPI Generator](https://openapi-generator.tech) project:
- API version: 1.63.1
- API version: 1.64.0
- Build package: org.openapitools.codegen.languages.DartClientCodegen
## Requirements

View File

@@ -1409,7 +1409,7 @@ packages:
source: hosted
version: "11.3.0"
wakelock:
dependency: transitive
dependency: "direct main"
description:
name: wakelock
sha256: "769ecf42eb2d07128407b50cb93d7c10bd2ee48f0276ef0119db1d25cc2f87db"

View File

@@ -2,7 +2,7 @@ name: immich_mobile
description: Immich - selfhosted backup media file on mobile phone
publish_to: "none"
version: 1.63.1+86
version: 1.64.0+87
isar_version: &isar_version 3.1.0+1
environment:
@@ -47,6 +47,7 @@ dependencies:
permission_handler: ^10.2.0
device_info_plus: ^8.1.0
crypto: ^3.0.3 # TODO remove once native crypto is used on iOS
wakelock: ^0.6.2
openapi:
path: openapi

View File

@@ -4374,7 +4374,7 @@
"info": {
"title": "Immich",
"description": "Immich API",
"version": "1.63.1",
"version": "1.64.0",
"contact": {}
},
"tags": [],

View File

@@ -1,12 +1,12 @@
{
"name": "immich",
"version": "1.63.1",
"version": "1.64.0",
"lockfileVersion": 2,
"requires": true,
"packages": {
"": {
"name": "immich",
"version": "1.63.1",
"version": "1.64.0",
"license": "UNLICENSED",
"dependencies": {
"@babel/runtime": "^7.20.13",

View File

@@ -1,6 +1,6 @@
{
"name": "immich",
"version": "1.63.1",
"version": "1.64.0",
"description": "",
"author": "",
"private": true,

View File

@@ -37,6 +37,7 @@ const validMimeTypes = [
'image/jpeg',
'image/jxl',
'image/png',
'image/dng',
'image/tiff',
'image/webp',
'image/x-adobe-dng',
@@ -66,6 +67,33 @@ const validMimeTypes = [
'image/x-sony-arw',
'image/x-sony-sr2',
'image/x-sony-srf',
'image/dng',
'image/ari',
'image/cr2',
'image/cr3',
'image/crw',
'image/erf',
'image/raf',
'image/3fr',
'image/fff',
'image/dcr',
'image/k25',
'image/kdc',
'image/rwl',
'image/mrw',
'image/nef',
'image/orf',
'image/ori',
'image/raw',
'image/pef',
'image/cin',
'image/cap',
'image/iiq',
'image/srw',
'image/x3f',
'image/arw',
'image/sr2',
'image/srf',
'video/3gpp',
'video/mp2t',
'video/mp4',

View File

@@ -87,6 +87,34 @@ describe('assetUploadOption', () => {
{ mimetype: 'image/x-sony-arw', extension: 'arw' },
{ mimetype: 'image/x-sony-sr2', extension: 'sr2' },
{ mimetype: 'image/x-sony-srf', extension: 'srf' },
{ mimetype: 'image/dng', extension: 'dng' },
{ mimetype: 'image/ari', extension: 'ari' },
{ mimetype: 'image/cr2', extension: 'cr2' },
{ mimetype: 'image/cr3', extension: 'cr3' },
{ mimetype: 'image/crw', extension: 'crw' },
{ mimetype: 'image/erf', extension: 'erf' },
{ mimetype: 'image/raf', extension: 'raf' },
{ mimetype: 'image/3fr', extension: '3fr' },
{ mimetype: 'image/fff', extension: 'fff' },
{ mimetype: 'image/dcr', extension: 'dcr' },
{ mimetype: 'image/k25', extension: 'k25' },
{ mimetype: 'image/kdc', extension: 'kdc' },
{ mimetype: 'image/rwl', extension: 'rwl' },
{ mimetype: 'image/mrw', extension: 'mrw' },
{ mimetype: 'image/nef', extension: 'nef' },
{ mimetype: 'image/orf', extension: 'orf' },
{ mimetype: 'image/ori', extension: 'ori' },
{ mimetype: 'image/raw', extension: 'raw' },
{ mimetype: 'image/pef', extension: 'pef' },
{ mimetype: 'image/cin', extension: 'cin' },
{ mimetype: 'image/cap', extension: 'cap' },
{ mimetype: 'image/iiq', extension: 'iiq' },
{ mimetype: 'image/srw', extension: 'srw' },
{ mimetype: 'image/x3f', extension: 'x3f' },
{ mimetype: 'image/arw', extension: 'arw' },
{ mimetype: 'image/sr2', extension: 'sr2' },
{ mimetype: 'image/srf', extension: 'srf' },
{ mimetype: 'video/3gpp', extension: '3gp' },
{ mimetype: 'video/mp2t', extension: 'm2ts' },
{ mimetype: 'video/mp2t', extension: 'mts' },

2
web/package-lock.json generated
View File

@@ -14,7 +14,7 @@
"copy-image-clipboard": "^2.1.2",
"handlebars": "^4.7.7",
"justified-layout": "^4.1.0",
"leaflet": "^1.9.3",
"leaflet": "^1.9.4",
"leaflet.markercluster": "^1.5.3",
"lodash-es": "^4.17.21",
"luxon": "^3.2.1",

View File

@@ -64,7 +64,7 @@
"copy-image-clipboard": "^2.1.2",
"handlebars": "^4.7.7",
"justified-layout": "^4.1.0",
"leaflet": "^1.9.3",
"leaflet": "^1.9.4",
"leaflet.markercluster": "^1.5.3",
"lodash-es": "^4.17.21",
"luxon": "^3.2.1",

View File

@@ -4,7 +4,7 @@
* Immich
* Immich API
*
* The version of the OpenAPI document: 1.63.1
* The version of the OpenAPI document: 1.64.0
*
*
* NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).

View File

@@ -4,7 +4,7 @@
* Immich
* Immich API
*
* The version of the OpenAPI document: 1.63.1
* The version of the OpenAPI document: 1.64.0
*
*
* NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).

View File

@@ -4,7 +4,7 @@
* Immich
* Immich API
*
* The version of the OpenAPI document: 1.63.1
* The version of the OpenAPI document: 1.64.0
*
*
* NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).

View File

@@ -4,7 +4,7 @@
* Immich
* Immich API
*
* The version of the OpenAPI document: 1.63.1
* The version of the OpenAPI document: 1.64.0
*
*
* NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).

View File

@@ -4,7 +4,7 @@
* Immich
* Immich API
*
* The version of the OpenAPI document: 1.63.1
* The version of the OpenAPI document: 1.64.0
*
*
* NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).

View File

@@ -246,7 +246,7 @@
{#await import('../shared-components/leaflet') then { Map, TileLayer, Marker }}
<Map center={latlng} zoom={14}>
<TileLayer
urlTemplate={'https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png'}
urlTemplate={'https://tile.openstreetmap.org/{z}/{x}/{y}.png'}
options={{
attribution:
'&copy; <a href="https://www.openstreetmap.org/copyright">OpenStreetMap</a>'

View File

@@ -37,3 +37,11 @@ export const mapSettings = persisted<MapSettings>('map-settings', {
});
export const videoViewerVolume = persisted<number>('video-viewer-volume', 1, {});
export interface AlbumViewSettings {
sortBy: string;
}
export const albumViewSettings = persisted<AlbumViewSettings>('album-view-settings', {
sortBy: 'Most recent photo'
});

View File

@@ -98,6 +98,35 @@ describe('get file mime type', () => {
{ mimetype: 'image/x-sony-arw', extension: 'arw' },
{ mimetype: 'image/x-sony-sr2', extension: 'sr2' },
{ mimetype: 'image/x-sony-srf', extension: 'srf' },
/*** The following MIME types are allowed for upload but not returned by getFileMimeType() ***
{ mimetype: 'image/dng', extension: 'dng' },
{ mimetype: 'image/ari', extension: 'ari' },
{ mimetype: 'image/cr2', extension: 'cr2' },
{ mimetype: 'image/cr3', extension: 'cr3' },
{ mimetype: 'image/crw', extension: 'crw' },
{ mimetype: 'image/erf', extension: 'erf' },
{ mimetype: 'image/raf', extension: 'raf' },
{ mimetype: 'image/3fr', extension: '3fr' },
{ mimetype: 'image/fff', extension: 'fff' },
{ mimetype: 'image/dcr', extension: 'dcr' },
{ mimetype: 'image/k25', extension: 'k25' },
{ mimetype: 'image/kdc', extension: 'kdc' },
{ mimetype: 'image/rwl', extension: 'rwl' },
{ mimetype: 'image/mrw', extension: 'mrw' },
{ mimetype: 'image/nef', extension: 'nef' },
{ mimetype: 'image/orf', extension: 'orf' },
{ mimetype: 'image/ori', extension: 'ori' },
{ mimetype: 'image/raw', extension: 'raw' },
{ mimetype: 'image/pef', extension: 'pef' },
{ mimetype: 'image/cin', extension: 'cin' },
{ mimetype: 'image/cap', extension: 'cap' },
{ mimetype: 'image/iiq', extension: 'iiq' },
{ mimetype: 'image/srw', extension: 'srw' },
{ mimetype: 'image/x3f', extension: 'x3f' },
{ mimetype: 'image/arw', extension: 'arw' },
{ mimetype: 'image/sr2', extension: 'sr2' },
{ mimetype: 'image/srf', extension: 'srf' },
**/
{ mimetype: 'video/3gpp', extension: '3gp' },
{ mimetype: 'video/mp2t', extension: 'm2ts' },
{ mimetype: 'video/mp2t', extension: 'mts' },

View File

@@ -1,4 +1,5 @@
<script lang="ts">
import { albumViewSettings } from '$lib/stores/preferences.store';
import AlbumCard from '$lib/components/album-page/album-card.svelte';
import { goto } from '$app/navigation';
import ContextMenu from '$lib/components/shared-components/context-menu/context-menu.svelte';
@@ -17,7 +18,6 @@
export let data: PageData;
const sortByOptions = ['Most recent photo', 'Last modified', 'Album title'];
let selectedSortBy = sortByOptions[0];
const {
albums: unsortedAlbums,
@@ -39,15 +39,16 @@
};
$: {
if (selectedSortBy === 'Most recent photo') {
const { sortBy } = $albumViewSettings;
if (sortBy === 'Most recent photo') {
$albums = $unsortedAlbums.sort((a, b) =>
a.lastModifiedAssetTimestamp && b.lastModifiedAssetTimestamp
? sortByDate(a.lastModifiedAssetTimestamp, b.lastModifiedAssetTimestamp)
: sortByDate(a.updatedAt, b.updatedAt)
);
} else if (selectedSortBy === 'Last modified') {
} else if (sortBy === 'Last modified') {
$albums = $unsortedAlbums.sort((a, b) => sortByDate(a.updatedAt, b.updatedAt));
} else if (selectedSortBy === 'Album title') {
} else if (sortBy === 'Album title') {
$albums = $unsortedAlbums.sort((a, b) => a.albumName.localeCompare(b.albumName));
}
}
@@ -86,7 +87,7 @@
</div>
</LinkButton>
<Dropdown options={sortByOptions} bind:value={selectedSortBy} />
<Dropdown options={sortByOptions} bind:value={$albumViewSettings.sortBy} />
</div>
<!-- Album Card -->

View File

@@ -118,7 +118,7 @@
}}
>
<TileLayer
urlTemplate={'https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png'}
urlTemplate={'https://tile.openstreetmap.org/{z}/{x}/{y}.png'}
options={{
attribution:
'&copy; <a href="https://www.openstreetmap.org/copyright">OpenStreetMap</a>'