Compare commits

...

4 Commits

Author SHA1 Message Date
Alex The Bot
58ae734fc2 Version v1.76.1 2023-08-30 08:26:04 +00:00
Mert
54b2779b79 chore(ml): improved logging (#3918)
* fixed `minScore` not being set correctly

* apply to init

* don't send `enabled`

* fix eslint warning

* added logger

* added logging

* refinements

* enable access log for info level

* formatting

* merged strings

---------

Co-authored-by: Alex <alex.tran1502@gmail.com>
2023-08-30 08:22:01 +00:00
Mert
df26e12db6 fix(ml): minScore not being set correctly (#3916)
* fixed `minScore` not being set correctly

* apply to init

* don't send `enabled`

* fix eslint warning

* better error message
2023-08-30 03:16:00 -05:00
Alex
343d89c032 chore: post release 2023-08-29 14:51:57 -05:00
30 changed files with 133 additions and 49 deletions

View File

@@ -4,7 +4,7 @@
* Immich
* Immich API
*
* The version of the OpenAPI document: 1.76.0
* The version of the OpenAPI document: 1.76.1
*
*
* NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).

View File

@@ -4,7 +4,7 @@
* Immich
* Immich API
*
* The version of the OpenAPI document: 1.76.0
* The version of the OpenAPI document: 1.76.1
*
*
* NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).

View File

@@ -4,7 +4,7 @@
* Immich
* Immich API
*
* The version of the OpenAPI document: 1.76.0
* The version of the OpenAPI document: 1.76.1
*
*
* NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).

View File

@@ -4,7 +4,7 @@
* Immich
* Immich API
*
* The version of the OpenAPI document: 1.76.0
* The version of the OpenAPI document: 1.76.1
*
*
* NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).

View File

@@ -4,7 +4,7 @@
* Immich
* Immich API
*
* The version of the OpenAPI document: 1.76.0
* The version of the OpenAPI document: 1.76.1
*
*
* NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).

View File

@@ -1,7 +1,11 @@
import logging
import os
from pathlib import Path
import starlette
from pydantic import BaseSettings
from rich.console import Console
from rich.logging import RichHandler
from .schemas import ModelType
@@ -23,6 +27,14 @@ class Settings(BaseSettings):
case_sensitive = False
class LogSettings(BaseSettings):
log_level: str = "info"
no_color: bool = False
class Config:
case_sensitive = False
_clean_name = str.maketrans(":\\/", "___", ".")
@@ -30,4 +42,26 @@ def get_cache_dir(model_name: str, model_type: ModelType) -> Path:
return Path(settings.cache_folder) / model_type.value / model_name.translate(_clean_name)
LOG_LEVELS: dict[str, int] = {
"critical": logging.ERROR,
"error": logging.ERROR,
"warning": logging.WARNING,
"warn": logging.WARNING,
"info": logging.INFO,
"log": logging.INFO,
"debug": logging.DEBUG,
"verbose": logging.DEBUG,
}
settings = Settings()
log_settings = LogSettings()
console = Console(color_system="standard", no_color=log_settings.no_color)
logging.basicConfig(
format="%(message)s",
handlers=[
RichHandler(show_path=False, omit_repeated_times=False, console=console, tracebacks_suppress=[starlette])
],
)
log = logging.getLogger("uvicorn")
log.setLevel(LOG_LEVELS.get(log_settings.log_level.lower(), logging.INFO))

View File

@@ -1,4 +1,5 @@
import asyncio
import logging
import os
from concurrent.futures import ThreadPoolExecutor
from typing import Any
@@ -11,7 +12,7 @@ from starlette.formparsers import MultiPartParser
from app.models.base import InferenceModel
from .config import settings
from .config import log, settings
from .models.cache import ModelCache
from .schemas import (
MessageResponse,
@@ -20,14 +21,20 @@ from .schemas import (
)
MultiPartParser.max_file_size = 2**24 # spools to disk if payload is 16 MiB or larger
app = FastAPI()
def init_state() -> None:
app.state.model_cache = ModelCache(ttl=settings.model_ttl, revalidate=settings.model_ttl > 0)
log.info(
(
"Created in-memory cache with unloading "
f"{f'after {settings.model_ttl}s of inactivity' if settings.model_ttl > 0 else 'disabled'}."
)
)
# asyncio is a huge bottleneck for performance, so we use a thread pool to run blocking code
app.state.thread_pool = ThreadPoolExecutor(settings.request_threads)
log.info(f"Initialized request thread pool with {settings.request_threads} threads.")
@app.on_event("startup")
@@ -77,4 +84,6 @@ if __name__ == "__main__":
port=settings.port,
reload=is_dev,
workers=settings.workers,
log_config=None,
access_log=log.isEnabledFor(logging.INFO),
)

View File

@@ -1,6 +1,5 @@
from __future__ import annotations
import os
import pickle
from abc import ABC, abstractmethod
from pathlib import Path
@@ -11,7 +10,7 @@ from zipfile import BadZipFile
import onnxruntime as ort
from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf # type: ignore
from ..config import get_cache_dir, settings
from ..config import get_cache_dir, log, settings
from ..schemas import ModelType
@@ -37,22 +36,41 @@ class InferenceModel(ABC):
self.provider_options = model_kwargs.pop(
"provider_options", [{"arena_extend_strategy": "kSameAsRequested"}] * len(self.providers)
)
log.debug(
(
f"Setting '{self.model_name}' execution providers to {self.providers}"
"in descending order of preference"
),
)
log.debug(f"Setting execution provider options to {self.provider_options}")
self.sess_options = PicklableSessionOptions()
# avoid thread contention between models
if inter_op_num_threads > 1:
self.sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL
log.debug(f"Setting execution_mode to {self.sess_options.execution_mode.name}")
log.debug(f"Setting inter_op_num_threads to {inter_op_num_threads}")
log.debug(f"Setting intra_op_num_threads to {intra_op_num_threads}")
self.sess_options.inter_op_num_threads = inter_op_num_threads
self.sess_options.intra_op_num_threads = intra_op_num_threads
try:
loader(**model_kwargs)
except (OSError, InvalidProtobuf, BadZipFile):
log.warn(
(
f"Failed to load {self.model_type.replace('_', ' ')} model '{self.model_name}'."
"Clearing cache and retrying."
)
)
self.clear_cache()
loader(**model_kwargs)
def download(self, **model_kwargs: Any) -> None:
if not self.cached:
print(f"Downloading {self.model_type.value.replace('_', ' ')} model. This may take a while...")
log.info(
(f"Downloading {self.model_type.replace('_', ' ')} model '{self.model_name}'." "This may take a while.")
)
self._download(**model_kwargs)
def load(self, **model_kwargs: Any) -> None:
@@ -62,7 +80,7 @@ class InferenceModel(ABC):
def predict(self, inputs: Any, **model_kwargs: Any) -> Any:
if not self._loaded:
print(f"Loading {self.model_type.value.replace('_', ' ')} model...")
log.info(f"Loading {self.model_type.replace('_', ' ')} model '{self.model_name}'")
self.load()
if model_kwargs:
self.configure(**model_kwargs)
@@ -109,13 +127,23 @@ class InferenceModel(ABC):
def clear_cache(self) -> None:
if not self.cache_dir.exists():
log.warn(
f"Attempted to clear cache for model '{self.model_name}' but cache directory does not exist.",
)
return
if not rmtree.avoids_symlink_attacks:
raise RuntimeError("Attempted to clear cache, but rmtree is not safe on this platform.")
if self.cache_dir.is_dir():
log.info(f"Cleared cache directory for model '{self.model_name}'.")
rmtree(self.cache_dir)
else:
log.warn(
(
f"Encountered file instead of directory at cache path "
f"for '{self.model_name}'. Removing file and replacing with a directory."
),
)
self.cache_dir.unlink()
self.cache_dir.mkdir(parents=True, exist_ok=True)

View File

@@ -12,6 +12,7 @@ from clip_server.model.tokenization import Tokenizer
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
from ..config import log
from ..schemas import ModelType
from .base import InferenceModel
@@ -105,9 +106,11 @@ class CLIPEncoder(InferenceModel):
if model_name in _MODELS:
return model_name
elif model_name in _ST_TO_JINA_MODEL_NAME:
print(
(f"Warning: Sentence-Transformer model names such as '{model_name}' are no longer supported."),
(f"Using '{_ST_TO_JINA_MODEL_NAME[model_name]}' instead as it is the best match for '{model_name}'."),
log.warn(
(
f"Sentence-Transformer models like '{model_name}' are not supported."
f"Using '{_ST_TO_JINA_MODEL_NAME[model_name]}' instead as it is the best match for '{model_name}'."
),
)
return _ST_TO_JINA_MODEL_NAME[model_name]
else:

View File

@@ -23,7 +23,7 @@ class FaceRecognizer(InferenceModel):
cache_dir: Path | str | None = None,
**model_kwargs: Any,
) -> None:
self.min_score = min_score
self.min_score = model_kwargs.pop("minScore", min_score)
super().__init__(model_name, cache_dir, **model_kwargs)
def _download(self, **model_kwargs: Any) -> None:
@@ -105,4 +105,4 @@ class FaceRecognizer(InferenceModel):
return self.cache_dir.is_dir() and any(self.cache_dir.glob("*.onnx"))
def configure(self, **model_kwargs: Any) -> None:
self.det_model.det_thresh = model_kwargs.get("min_score", self.det_model.det_thresh)
self.det_model.det_thresh = model_kwargs.pop("minScore", self.det_model.det_thresh)

View File

@@ -8,6 +8,7 @@ from optimum.pipelines import pipeline
from PIL import Image
from transformers import AutoImageProcessor
from ..config import log
from ..schemas import ModelType
from .base import InferenceModel
@@ -22,7 +23,7 @@ class ImageClassifier(InferenceModel):
cache_dir: Path | str | None = None,
**model_kwargs: Any,
) -> None:
self.min_score = min_score
self.min_score = model_kwargs.pop("minScore", min_score)
super().__init__(model_name, cache_dir, **model_kwargs)
def _download(self, **model_kwargs: Any) -> None:
@@ -35,19 +36,25 @@ class ImageClassifier(InferenceModel):
)
def _load(self, **model_kwargs: Any) -> None:
processor = AutoImageProcessor.from_pretrained(self.cache_dir)
processor = AutoImageProcessor.from_pretrained(self.cache_dir, cache_dir=self.cache_dir)
model_path = self.cache_dir / "model.onnx"
model_kwargs |= {
"cache_dir": self.cache_dir,
"provider": self.providers[0],
"provider_options": self.provider_options[0],
"session_options": self.sess_options,
}
model_path = self.cache_dir / "model.onnx"
if model_path.exists():
model = ORTModelForImageClassification.from_pretrained(self.cache_dir, **model_kwargs)
self.model = pipeline(self.model_type.value, model, feature_extractor=processor)
else:
log.info(
(
f"ONNX model not found in cache directory for '{self.model_name}'."
"Exporting optimized model for future use."
),
)
self.sess_options.optimized_model_filepath = model_path.as_posix()
self.model = pipeline(
self.model_type.value,
@@ -65,4 +72,4 @@ class ImageClassifier(InferenceModel):
return tags
def configure(self, **model_kwargs: Any) -> None:
self.min_score = model_kwargs.get("min_score", self.min_score)
self.min_score = model_kwargs.pop("minScore", self.min_score)

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "machine-learning"
version = "1.76.0"
version = "1.76.1"
description = ""
authors = ["Hau Tran <alex.tran1502@gmail.com>"]
readme = "README.md"

View File

@@ -36,7 +36,7 @@ platform :android do
build_type: 'Release',
properties: {
"android.injected.version.code" => 99,
"android.injected.version.name" => "1.76.0",
"android.injected.version.name" => "1.76.1",
}
)
upload_to_play_store(skip_upload_apk: true, skip_upload_images: true, skip_upload_screenshots: true, aab: '../build/app/outputs/bundle/release/app-release.aab')

View File

@@ -10,12 +10,12 @@
</testcase>
<testcase classname="fastlane.lanes" name="1: bundleRelease" time="67.877631">
<testcase classname="fastlane.lanes" name="1: bundleRelease" time="63.585931">
</testcase>
<testcase classname="fastlane.lanes" name="2: upload_to_play_store" time="23.895222">
<testcase classname="fastlane.lanes" name="2: upload_to_play_store" time="24.755096">
</testcase>

View File

@@ -169,4 +169,4 @@ SPEC CHECKSUMS:
PODFILE CHECKSUM: 599d8aeb73728400c15364e734525722250a5382
COCOAPODS: 1.11.3
COCOAPODS: 1.12.1

View File

@@ -379,7 +379,7 @@
CODE_SIGN_ENTITLEMENTS = Runner/RunnerProfile.entitlements;
CODE_SIGN_IDENTITY = "Apple Development";
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 113;
CURRENT_PROJECT_VERSION = 116;
DEVELOPMENT_TEAM = 2F67MQ8R79;
ENABLE_BITCODE = NO;
INFOPLIST_FILE = Runner/Info.plist;
@@ -515,7 +515,7 @@
CLANG_ENABLE_MODULES = YES;
CODE_SIGN_IDENTITY = "Apple Development";
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 113;
CURRENT_PROJECT_VERSION = 116;
DEVELOPMENT_TEAM = 2F67MQ8R79;
ENABLE_BITCODE = NO;
INFOPLIST_FILE = Runner/Info.plist;
@@ -543,7 +543,7 @@
CLANG_ENABLE_MODULES = YES;
CODE_SIGN_IDENTITY = "Apple Development";
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 113;
CURRENT_PROJECT_VERSION = 116;
DEVELOPMENT_TEAM = 2F67MQ8R79;
ENABLE_BITCODE = NO;
INFOPLIST_FILE = Runner/Info.plist;

View File

@@ -59,11 +59,11 @@
<key>CFBundlePackageType</key>
<string>APPL</string>
<key>CFBundleShortVersionString</key>
<string>1.73.0</string>
<string>1.76.0</string>
<key>CFBundleSignature</key>
<string>????</string>
<key>CFBundleVersion</key>
<string>113</string>
<string>116</string>
<key>FLTEnableImpeller</key>
<true />
<key>ITSAppUsesNonExemptEncryption</key>

View File

@@ -19,7 +19,7 @@ platform :ios do
desc "iOS Beta"
lane :beta do
increment_version_number(
version_number: "1.76.0"
version_number: "1.76.1"
)
increment_build_number(
build_number: latest_testflight_build_number + 1,

View File

@@ -5,32 +5,32 @@
<testcase classname="fastlane.lanes" name="0: default_platform" time="0.000187">
<testcase classname="fastlane.lanes" name="0: default_platform" time="0.000243">
</testcase>
<testcase classname="fastlane.lanes" name="1: increment_version_number" time="2.403882">
<testcase classname="fastlane.lanes" name="1: increment_version_number" time="2.611762">
</testcase>
<testcase classname="fastlane.lanes" name="2: latest_testflight_build_number" time="5.068392">
<testcase classname="fastlane.lanes" name="2: latest_testflight_build_number" time="6.937008">
</testcase>
<testcase classname="fastlane.lanes" name="3: increment_build_number" time="1.988079">
<testcase classname="fastlane.lanes" name="3: increment_build_number" time="2.740416">
</testcase>
<testcase classname="fastlane.lanes" name="4: build_app" time="96.47923">
<testcase classname="fastlane.lanes" name="4: build_app" time="93.625943">
</testcase>
<testcase classname="fastlane.lanes" name="5: upload_to_testflight" time="57.517755">
<testcase classname="fastlane.lanes" name="5: upload_to_testflight" time="62.107671">
</testcase>

View File

@@ -3,7 +3,7 @@ Immich API
This Dart package is automatically generated by the [OpenAPI Generator](https://openapi-generator.tech) project:
- API version: 1.76.0
- API version: 1.76.1
- Build package: org.openapitools.codegen.languages.DartClientCodegen
## Requirements

View File

@@ -2,7 +2,7 @@ name: immich_mobile
description: Immich - selfhosted backup media file on mobile phone
publish_to: "none"
version: 1.76.0+99
version: 1.76.1+99
isar_version: &isar_version 3.1.0+1
environment:

View File

@@ -4680,7 +4680,7 @@
"info": {
"title": "Immich",
"description": "Immich API",
"version": "1.76.0",
"version": "1.76.1",
"contact": {}
},
"tags": [],

View File

@@ -1,12 +1,12 @@
{
"name": "immich",
"version": "1.76.0",
"version": "1.76.1",
"lockfileVersion": 2,
"requires": true,
"packages": {
"": {
"name": "immich",
"version": "1.76.0",
"version": "1.76.1",
"license": "UNLICENSED",
"dependencies": {
"@babel/runtime": "^7.22.11",

View File

@@ -1,6 +1,6 @@
{
"name": "immich",
"version": "1.76.0",
"version": "1.76.1",
"description": "",
"author": "",
"private": true,

View File

@@ -43,7 +43,10 @@ export class MachineLearningRepository implements IMachineLearningRepository {
async getFormData(input: TextModelInput | VisionModelInput, config: ModelConfig): Promise<FormData> {
const formData = new FormData();
const { modelName, modelType, ...options } = config;
const { enabled, modelName, modelType, ...options } = config;
if (!enabled) {
throw new Error(`${modelType} is not enabled`);
}
formData.append('modelName', modelName);
if (modelType) {

View File

@@ -4,7 +4,7 @@
* Immich
* Immich API
*
* The version of the OpenAPI document: 1.76.0
* The version of the OpenAPI document: 1.76.1
*
*
* NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).

View File

@@ -4,7 +4,7 @@
* Immich
* Immich API
*
* The version of the OpenAPI document: 1.76.0
* The version of the OpenAPI document: 1.76.1
*
*
* NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).

View File

@@ -4,7 +4,7 @@
* Immich
* Immich API
*
* The version of the OpenAPI document: 1.76.0
* The version of the OpenAPI document: 1.76.1
*
*
* NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).

View File

@@ -4,7 +4,7 @@
* Immich
* Immich API
*
* The version of the OpenAPI document: 1.76.0
* The version of the OpenAPI document: 1.76.1
*
*
* NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).

View File

@@ -4,7 +4,7 @@
* Immich
* Immich API
*
* The version of the OpenAPI document: 1.76.0
* The version of the OpenAPI document: 1.76.1
*
*
* NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).